conformations should allow estimates of these π -bond energies and will be reported in a later paper.

The second form of evidence suggesting multiple bonding between the metal atom and the pyridine groups comes from the metal-nitrogen atom bond lengths. The values determined here are nearly equal and average 2.187 Å. Values of 2.12 and 2.14 Å have been reported for this distance in $Co(NCS)_2(py)_2^{28}$ and $CoCl_2(py)_{2}$,²⁹ where the cobalt atom in both cases is octahedrally coordinated through bridging by the nonpyridine ligands; however, both of these structures were done only with projections and no reliable estimate of the errors involved is available. Further, these distances might also be shortened from the ideal single-bond distance. The value for hypothetical single-bond distances for the fifth and sixth coordination positions of a cobalt acetylacetonate is needed, and the structure⁶ of $Co(AA)_2(H_2O)_2$ provides that information. There is little reason to believe that there is any double bonding between the cobalt atom and the water (28) M. A. Porai-Koshits and G. N. Tischenko, Kristallografiya, 4, 239

(1959). (29) J. D. Dunitz, Acta Cryst., **10**, 307 (1957). molecule; thus the Co– $O_{H_{10}}$ distance of 2.23 ± 0.01 Å may be taken to represent the single bond distance between cobalt and oxygen atoms of neutral molecules in cobalt acetylacetonate adducts. In going from oxygen to nitrogen a correction³⁰ of 0.04 Å must be added to give the expected cobalt–nitrogen atom distance of 2.27 Å. Thus the distance, 2.187 Å, determined in this study seems to indicate some shortening due to π bonding.

Acknowledgment.—The author wishes to thank Professors Jack Halpern and E. B. Fleischer for helpful discussions, Robert B. K. Dewar for assistance in programming, and the Advanced Research Projects Agency and the donors of the Petroleum Research Fund administered by the American Chemical Society for financial support.

(30) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, p 224 f. Table 7.2 lists the covalent radius for the nitrogen atom as 0.70 Å and that for the oxygen atom as 0.66 Å, whereas Table 7.5 gives the Schomaker-Stevenson radii of both atoms as 0.74 Å; however, the second distances must be corrected for electronegativity differences between cobalt and nitrogen or oxygen by -0.09 Å $|_{\rm XCo} - _{\rm XN,O}|$, which gives nitrogen as 0.045 Å larger than oxygen.

Contribution from The Mallinckrodt Laboratory, Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

The Crystal and Molecular Structure of π -Cyclopentadienyl(1,2-dicyanoethene-1,2-dithiolato)cobalt^{1,2}

BY MELVYN R. CHURCHILL AND JAMES P. FENNESSEY

Received December 29, 1967

 π -Cyclopentadienyl(1,2-dicyanoethene-1,2-dithiolato)cobalt, π -C₃H₅CoS₂C₂(CN)₂, crystallizes in the monoclinic space group C2/c (C_{2h}⁶; no. 15) with $a = 17.05 \pm 0.02$ Å, $b = 8.50 \pm 0.01$ Å, $c = 14.82 \pm 0.02$ Å, $\beta = 109.48 \pm 0.05^{\circ}$, Z = 8. Observed and calculated densities are, respectively, 1.72 ± 0.02 and 1.732 g cm⁻³. A single-crystal X-ray diffraction study, based on data to sin $\theta = 0.40$, has led to the location of all atoms (including hydrogens). The final discrepancy index is $R_F = 7.1\%$ for 1337 independent nonzero reflections. The crystal is composed of distinct molecular units of π -C₆H₅CoS₂C₂-(CN)₂ separated by normal van der Waals forces. The cobalt atom may be considered pentacoordinate since it is linked to a bidentate dithiolate ligand and a formally tridentate π -cyclopentadienyl ligand. The molecule possesses approximate C_s symmetry. Cobalt-sulfur distances average 2.117 \pm 0.003 Å; other distances within the dithiolate system include: C-S = 1.702 \pm 0.007 Å and C-C = 1.364 \pm 0.010 Å.

Introduction

Infrared spectral studies on the 1,2-disubstituted ethene-1,2-dithiolate complexes, π -C₅H₅CoS₂C₂R₂ (R = CF₃,³ CN⁴), led to the suggestion that the dithiolate ligand might bond to the metal *via* both cobalt–sulfur and cobalt–olefin bonding (I), rather than by cobalt–sulfur bonding alone (II). A crystallographic examination of π -C₅H₆CoS₂C₂(CN)₂ was originally⁵

undertaken to resolve this ambiguity. However, while our investigation of the complex was still incomplete, a study⁶ of the closely related molecule π -C₈H₆CoS₂C₂-(CF₃)₂ showed structure II to be appropriate. The bond distances within the S₂C₂(CF₃)₂ ligand (particularly the carbon-carbon bond length of 1.48 ± 0.05 Å within the "ethene") led to the proposal⁶ that the molecule should be described as an ethane-1,2-dithione complex (III) rather than as an ethylene-1,2-dithiolate de-(6) H. W. Baird and B. M. White, J. Am. Chem. Soc., **89**, 4744 (1966).

⁽¹⁾ We have followed Ibers² in using the term "ethene-1,2-dithiolate" to describe the ligand in such a way as not to predispose the reader toward any one valence bond description of the complex. The structural formula II is in keeping with this policy.

⁽²⁾ R. Eisenberg and J. A. Ibers, *Inorg. Chem.*, 5, 411 (1966), particularly footnote 20.

⁽³⁾ R. B. King, J. Am. Chem. Soc., 85, 1587 (1963).

⁽⁴⁾ J. Locke and J. A. McCleverty, Inorg. Chem., 5, 1157 (1966).

⁽⁵⁾ See footnote 17 of ref 4.

rivative (IV). Since crystallographic studies on a variety of bis and tris transition metal complexes of 1,2disubstituted ethene-1,2-dithiolates had shown^{2,7-16} carbon-carbon bond lengths within the "ethene" residue to vary in the range 1.32–1.40 Å (*i.e.*, closer to an ethylene bond length of 1.335 Å^{17a} than to an sp²–sp² single-bond distance of 1.465^{17b}) we decided to continue our structural study of π -C₆H₆CoS₂C₂(CN)₂. Our results are summarized below.

Unit Cell and Space Group

Purple-black crystals of π -C₅H₅CoS₂C₂(CN)₂ were supplied by Dr. J. A. McCleverty⁴ of Sheffield University, Sheffield, England. The complex is air stable and is not X-ray sensitive. Optical examination and a reciprocal lattice symmetry of C_{2h} (2/m) indicated that the crystals belonged to the monoclinic system. Unitcell dimensions at $24 \pm 2^{\circ}$, obtained by a least-squares analysis of calibrated ($a_{\text{NaCl}} = 5.640$ Å) high-angle precession data taken with Mo K α radiation ($\bar{\lambda}$ 0.7107 Å) are: $a = 17.05 \pm 0.02$ Å, $b = 8.50 \pm 0.01$ Å, c = 14.82 ± 0.02 Å, $\beta = 109.48 \pm 0.05^{\circ}$. The unit-cell volume is 2024 Å³. A survey of Nkl, hNl, hkN (N = (0-2) photographs revealed the systematic absences hklfor h + k = 2n + 1 and hol for l = 2n + 1, compatible with space group Cc (no. 9) or C2/c (no. 15). The observed density ($\rho_{obsd} = 1.72 \pm 0.02 \text{ g cm}^{-3}$, by flotation in aqueous zinc iodide solution) indicated eight molecules per unit cell ($\rho_{calcd} = 1.732$ g cm⁻³ for M =264, Z = 8). The Patterson synthesis and subsequent solution of the structure (vide infra) showed that the true space group was the centrosymmetric C2/c (C_{2h}^{6} ; no. 15).

Collection and Reduction of X-Ray Data

Two crystals were used for data collection: crystal I $(0.30 \times 0.38 \times 0.15 \text{ mm})$ was mounted on its a axis and crystal II $(0.40 \times 0.32 \times 0.10 \text{ mm})$ was mounted on its b axis. Intensity data were collected with a 0.01°-incrementing Buerger automated diffractometer, used in conjunction with a fully stabilized Philips X-ray generator (operated at 47 kV/15 mA), a Philips No. 52572 transistorized scintillation counter, and a Philips No. 12206 electronics panel. The scintillation counter was adjusted to receive Mo K α radiation ($\bar{\lambda}$ 0.7107 Å), the K β component being virtually eliminated by the use of a 0.003-in. zirconium filter at the X-ray source. With the counter voltage stabilized at 840 V, the base line of the pulse-height analyzer and the window voltage

- (7) J. D. Forrester, A. Zalkin, and D. H. Templeton, *Inorg. Chem.*, **3**, 1500 (1964).
- (8) J. D. Forrester, A. Zalkin, and D. H. Templeton, *ibid.*, **3**, 1507 (1964).
 (9) R. Eisenberg and J. A. Ibers, *ibid.*, **4**, 605 (1965).
- (10) J. H. Enemark and W. N. Lipscomb, *ibid.*, **4**, 1729 (1965).
- (11) A. E. Smith, G. N. Schrauzer, V. P. Mayweg, and W. Heinrich, J. Am. Chem. Soc., 87, 5798 (1965).
 - (12) C. J. Fritchie, Acta Cryst., 20, 107 (1966).
 - (13) D. Sartain and M. R. Truter, Chem. Commun., 382 (1966).
- (14) R. Eisenberg, E. I. Steifel, R. C. Rosenberg, and H. B. Gray, J. Am. Chem. Soc., 88, 2874 (1966).
 - (15) W. C. Hamilton and I. Bernal, Inorg. Chem., 6, 2003 (1967).
- (16) E. I. Steifel, Z. Dori, and H. B. Gray, J. Am. Chem. Soc., 89, 3353 (1967).
- (17) "Tables of Interatomic Distances and Configuration in Molecules and Ions," Special Publication No. 18, The Chemical Society, London, 1965:(a) p S16s; (b) p S15s.

were optimized by monitoring an intense reflection on a standard (sodium chloride) crystal. All voltages were then maintained at constant values throughout the analysis.

Reciprocal-lattice and diffractometer coordinates were brought into coincidence after determining the counter angle (T) and crystal-rotation angle (Φ) for a series of Friedel-related reflections on the levels 0kl(crystal I) and h0l (crystal II). Background radiation was reduced to the minimum level compatible with no loss of intensity in the diffracted beam by interposing a series of 2.0-mm lead-surrounded apertures in the collimating system between crystal and counter. The source-to-crystal distance was 70 mm and the crystalto-counter distance was 90 mm. No attenuators were used since the maximum observed counting rate ($\sim 2 \times 10^4$ counts/sec) was not expected to give rise to coincidence losses (the "dead-time" of the counter is less than 10^{-6} sec).

The diffractometer was programmed to collect all data within a given Weissenberg zone using the standard "stationary-background, w-scan, stationary-background" counting sequence. A careful study of the mosaicity of the two crystals led to the choice of scan range $\omega = [2.0 + (0.6/L)]^\circ$, where 1/L is the Lorentz factor for the equiinclination Weissenberg method, $1/L = \cos^2 \mu \sin \Upsilon$. [The inclusion of the term involving the Lorentz factor allows for the divergence of the X-ray beam, which manifests itself in extended loworder reflections on upper-level data.¹⁸] Within each zone, the over-all stability of the entire system (and the setting of the crystal) was monitored by remeasuring a carefully selected check reflection after each batch of 20 reflections had been collected; also, the check reflection for the appropriate zero layer was remeasured at the end of each zone. The absence of any significant variations indicated stability both of electronics and sample. Throughout the analysis, all scans were recorded on a chart recorder in order to check on peak profile, centering of the reflection in ϕ , and possible overlap of adjacent reflections. No such problems were, in fact, encountered.

I(hkl), the intensity of a reflection hkl, was determined in the following manner. (i) The counter was positioned to $\Upsilon_0(hkl)$ where it remained stationary. (ii) The crystal was rotated to an angle $\phi_1 = [\Phi_0(hkl) - \omega(hkl)/2]$ and the first background, B_1 , was measured for t sec. (iii) The crystal was rotated by $\omega(hkl)^\circ$ at a constant rate of 1°/min until it reached the angle $\phi_2 = [\Phi_0(hkl) + \omega(hkl)/2]$. The entire scan took 2t sec, the integrated count being C. (iv) The second background, B_2 , was measured for t sec at ϕ_2 . (v) The net count was calculated as $I(hkl) = C - (B_1 + B_2)$.

Long-exposure Weissenberg photographs for the zones Nkl and hNl (N = 0-2) indicated that beyond $\sin \theta = 0.40$ there was a very low ratio of observable to unobservable reflections. It was decided, therefore, to restrict data collection to those reflections with $\sin \theta \leq 0.40$. Data for the zones 0kl through 18kl were col-

(18) D. C. Phillips, Acta Cryst., 7, 746 (1954).

ATT C-C C (CNT) (INT INT DOMINION)

	OBSEI	RVED AND C	ALCULATED	SIRUCIURE	FACIORS FO		$0.0202(CIV)_2$	(III BEBCIR	01107	
K L PO PC	K L FO FC	K L FO FC	K L FO FC	K L PO PC	K L FO FC	K L FG FC	L FO FC	к L FO FC 2-11 3 4	K L FO FC	K L FO FC
				RITTOR 		111		14444444444444444444444444444444444444	 	

Table I

lected from crystal I and data for the zones h0l through h8l were collected from crystal II.

Standard deviations were assigned according to: $I(hkl) \ge 3[C + B_1 + B_2]^{1/2}$, $\sigma(hkl) = 0.1[I(hkl)]$; $I(hkl) \le 3[C + B_1 + B_2]^{1/2}$, $\sigma(hkl) = 0.3[C + B_1 + B_2]/[I(hkl)]$; $I(hkl) \le 0$, reflections rejected. Of the 1383 independent reflections measured from crystal I, 143 were rejected; 1142 nonzero reflections were obtained from the *b*-mounted crystal II. Data were corrected for Lorentz and polarization effects $[1/LP = 2 \cos^2 \mu \sin \Upsilon/(1 + \cos^2 2\theta)]$ and an absorption correction¹⁹ ($\mu = 22.5 \text{ cm}^{-1}$ for Mo K α) was applied. Calculated transmission coefficients ranged from 0.51 to 0.71 for crystal I (volume 0.0138 mm^3) and from 0.52 to 0.80 for crystal II (volume 0.0108 mm^3).

Data were merged by means of a least-squares analysis²⁰ of common reflections. The resulting 1337 independent nonzero reflections were used for a Wilson plot, from which were obtained an approximate absolute scale factor and an over-all thermal parameter (B = 3.4 Å^2). [It should be noted that (due to the *C*-facecentering operation) there are no cross terms between (2n + 1)h (2n + 1)k l and 2nh 2nk l reflections. These two groups of reflections were treated separately. For the purposes of the Wilson plot it was assumed that the two groups of data were on a common scale; during

⁽²⁰⁾ A. D. Rae, Acta Cryst., 19, 683 (1965).

subsequent refinement of the structure, two scale factors were included. These did not differ by more than 0.2% at the end of the refinement procedure.]

Elucidation and Refinement of Structure

A systematic survey of the three-dimensional normalsharpened²¹ Patterson synthesis,²² P(UVW), revealed a set of vectors compatible with a cobalt atom at x =0.098, y = -0.247, z = 0.159 in the centrosymmetric space group C2/c. A three-dimensional difference-Fourier map,²² phased by the cobalt atom $(R_F =$ 0.39^{23}), provided the locations of the two sulfur atoms. A second difference-Fourier synthesis, phased now by all three "heavy" atoms ($R_F = 0.28$), led to the location of all nonhydrogen atoms. Five cycles of refinement²⁴ of positional and individual isotropic thermal parameters for all nonhydrogen atoms resulted in convergence at $R_F = 0.115, R_{F^2} = 0.165, R_{wF^2} = 0.356.$ A difference-Fourier synthesis now revealed patterns about some atomic positions characteristic of anisotropy in thermal motions (and also showed probable locations for hydrogen atoms, but these were temporarily ignored). Refinement was continued using anisotropic thermal parameters for all atoms. Two cycles of least-squares refinement led to the values $R_F = 0.086$, $R_{F^2} = 0.139$, $R_{wF^2} = 0.285$. A difference-Fourier map at this stage was relatively smooth in relief but showed peaks of height $0.5-0.7 \text{ e}^- \text{Å}^{-3}$ in positions consistent with those expected for the five hydrogen atoms of the π -cyclopentadienyl ring [Peak heights for carbon atoms in a total electron density synthesis are each $\sim 5 e^{-} A^{-3}$. Contributions from hydrogen atoms were included in subsequent structure factor calculations. A further four cycles of anisotropic refinement, with the hydrogen atoms held in calculated²⁵ positions with B = 6.0 Å², led to convergence of refinement with $R_F = 0.071$, $R_{F^2} = 0.088$, $R_{wF^2} = 0.242$. The final suggested shifts in atomic parameters were each less than 6% of the appropriate standard deviation.

Throughout the analysis, scattering factors for neutral carbon, nitrogen, and hydrogen (as compiled by Ibers²⁶) were used. The values for neutral sulfur^{26a} and cobalt^{26b} were corrected for the real part of the dispersion^{26c} ($\Delta f'_{\rm Co} = +0.4 \, {\rm e}^-$, $\Delta f'_{\rm S} = +0.1 \, {\rm e}^-$) but not for the imaginary component ($\Delta f''_{\rm Co} = +1.1 \, {\rm e}^-$, $\Delta f''_{\rm S} = +0.2 \, {\rm e}^-$). The residual minimized was $\Sigma w ||F_o|^2 - |F_o|^2|^2$.

Observed and calculated structure factors are shown in Table I. Atomic positions are collected in Table II.

(21) Coefficients for the normal-sharpened Patterson synthesis were calculated using an updated version of PASHCO, an IBM 7090 program by B. R. Penfold.

(22) Patterson and Fourier syntheses were calculated using EEFR-2, a twoand three-dimensional Fourier program for the IBM 709/7090 by W. G. Sly, D. P. Shoemaker, and J. H. van der Hende.

 $\begin{array}{l} (23) \ R_F = \Sigma \Big| \left| F_o \right| - \left| F_c \right| \right| \Sigma \left| F_o \right|; \ R_F^2 = \Sigma \Big| \left| F_o \right|^2 - \left| F_c \right|^2 / \Sigma \left| F_o \right|^2; \ R_F^2 \\ = \left[\Sigma w (\left| F_o \right|^2 - \left| F_c \right|^2)^2 / \Sigma w \left| F_o \right|^4 \right]^{1/2}. \end{array}$

(24) Structure factor calculations and least-squares refinement of positional and thermal parameters were peformed using ORFLS, a Fortran least-squares program by W. R. Busing, K. O. Martin, and H. A. Levy.

(25) Hydrogen atoms were positioned such as to maintain the approximate D_{5h} symmetry of the ligand, with d(C-H) = 1.080 Å. These positions were not allowed to refine but were redefined (with respect to the new carbon atom positions) at the end of each cycle of refinement.

(26) "International Tables for X-Ray Crystallography," Vol. 3, The Kynoch Press, Birmingham, England, 1962: (a) p 202; (b) p 211; (c) p 216.

 TABLE II

 FINAL POSITIONAL PARAMETERS (WITH ESD'S)

 POD = C H COS C (CN) k = c

FOR π -C ₅ H ₅ COS ₂ C ₂ (CN) ₂ $^{a=c}$						
Atom	x	У	z			
Co	0.09655(6)	0.75163(9)	0.15629(7)			
S_1	-0.0312(1)	0.7770(2)	0.0775(2)			
S_2	0.0856(1)	0.5069(2)	0.1776(1)			
N_1	-0.2256(5)	0.5467(12)	-0.0109(7)			
N_2	-0.0730(5)	0.1877(9)	0.1282(6)			
C_1	-0.0690(4)	0.5907(8)	0.0760(5)			
C_2	-0.0171(5)	0.4715(8)	0.1211(6)			
C_3	-0.1577(5)	0.5618(9)	0.0272(5)			
C_4	-0.0490(5)	0.3125(9)	0.1240(5)			
Cő	0.1272(6)	0.9848(10)	0.1743(9)			
C_6	0.1605(6)	0.9111(14)	0.1112(6)			
C_7	0.2154(6)	0.7890(13)	0.1636(9)			
C_8	0.2115(6)	0.7946(12)	0.2567(7)			
C_9	0.1546(6)	0.9081(11)	0.2616(7)			
${ m H}_{\mathfrak{s}}$	0.0836	1.0822	0.1562			
H_6	0.1492	0.9410	0.0370			
H_7	0.2525	0.7106	0.1366			
H_8	0.2457	0.7170	0.3146			
$H_{\$}$	0.1379	0.9372	0.3238			

^a Estimated standard deviations, shown in parentheses, are right-adjusted to the least significant digit of the preceding number. ^b Positions for hydrogen atoms are calculated assuming (i), a carbon-hydrogen bond distance of 1.080 Å and (ii) that hydrogen atoms are coplanar with the five π -cyclopentadienyl carbon atoms and are disposed such that the extension of each H–C bond bisects the pentagonal π -cyclopentadienyl system. ^c A hydrogen atom is numbered similarly to the carbon atom to which it is bonded.

Anisotropic thermal parameters and their associated vibration ellipsoids are given in Tables III and IV, respectively.

The Molecular Structure

Interatomic distances are shown in Table V; bond angles are collected in Table VI.

This analysis shows that the ethene-1,2-dithiolate ligand in the π -C₅H₅CoS₂C₂(CN)₂ molecule bonds to the metal via sulfur-cobalt linkages only (this is also the case for π -C₅H₅CoS₂C₂(CF₃)₂⁶). The cobalt atom may be regarded as pentacoordinate since it is bonded to the bidentate dithiolate ligand and to a formally tridentate π -cyclopentadienyl system. The average cobalt-sulfur distance of 2.117 ± 0.003 Å would appear to be significantly greater than the value of 2.08 ± 0.01 Å reported for π -C₅H₅CoS₂C₂(CF₃)₂⁶ but is lower than distances of 2.161 \pm 0.002 Å in $[(n-C_4H_9)_4N]_2[Co\{S_2C_2(CN)_2\}]^7$ and 2.161 \pm 0.016 Å in Co₂[S₂C₂(CF₃)₂]₄.¹⁰ The S-Co-S angle of $93.2 \pm 0.1^{\circ}$ in the present complex is close to the 92.2° reported for π -C₅H₅CoS₂C₂(CF₃)_{2.6} Distances of the π -cyclopentadienyl carbon atoms from the cobalt range from 2.006 to 2.050 Å, averaging 2.029 Å. Variations from the mean are *not* statistically significant, but the average cobalt-carbon distance does seem to be lower than that observed in other π -cyclopentadienylcobalt complexes, viz.: 2.080 Å in π - $C_5H_5C_0C_5H_5C_6H_5$, 27, 28 2.05 Å in π -C₅H₅C₀C₅H₅C₀C₆-

⁽²⁷⁾ M. R. Churchill and R. Mason, Proc. Chem. Soc., 112 (1963).

⁽²⁸⁾ M. R. Churchill and R. Mason, Proc. Roy Soc. (London), A279, 191 (1964).

	Anisotropic Thermal Parameters for π -C ₅ H ₅ CoS ₂ C ₂ (CN) ₂ a,b							
Atom	104 <i>β</i> 11	$10^{4}\beta_{22}$	104 <i>β</i> 33	$10^{4}eta_{^{12}}$	$10^{4}\beta_{13}$	$10^{4}\beta_{23}$		
Co	33.5(0.7)	128.7(2.6)	38.9(0.9)	-6.4(0.5)	11.9(0.5)	-1.6(0.6)		
S_1	36.2(1.0)	127.8(3.1)	55.5(1.4)	0.4(1.2)	9.0(0.8)	9.3(1.4)		
S_2	34.6(1.0)	135.6(3.6)	47.3(1.3)	-1.4(1.0)	10.2(0.8)	9.8(1.2)		
N_1	37 (3)	344 (20)	71(5)	-28(7)	6(4)	24 (8)		
N_2	72 (4)	161 (13)	73(5)	-41(6)	26(4)	9 (6)		
C_1	26(3)	133 (10)	47 (4)	4 (4)	12(3)	5(5)		
C_2	33 (3)	153(11)	53 (5)	-5(5)	25(3)	8(6)		
C ₃	55(5)	159(13)	24(4)	-4(6)	8(3)	24(5)		
C₄	34 (3)	177 (15)	40 (4)	-1(5)	6(3)	0 (6)		
C ₅	40 (4)	143(14)	116 (10)	-0(5)	15(5)	14 (8)		
C ₆	67 (5)	286 (20)	52(5)	-81 (9)	15(4)	4(9)		
C_7	47 (5)	222(15)	95 (8)	-41(7)	26(5)	-65(10)		
C ₈	53(4)	194 (14)	42 (4)	-29(7)	-4(3)	-20(7)		
C_9	53(4)	208(15)	58(5)	-38(7)	6(4)	-17 (8)		

TABLE III ANISOTROPIC THERMAL PARAMETERS FOR π -C:H:CoSoC.(CN).^{a,b}

^a The anisotropic thermal parameter, T, is defined as: $T = \exp(-\beta_{11}h^2 - \beta_{22}k^2 - \beta_{33}l^2 - 2\beta_{13}hl - 2\beta_{23}kl)$. ^b Esd's, in parentheses, are right-adjusted to the least significant digit of the preceding number.

TABLE IV

Direction Cosines^a for the Atomic Vibration Ellipsoids^b in π -C₅H₅CoS₂C₂(CN)₂

Atom	B_{\max}	$B_{\rm med}$	B_{\min}
	(dc's major axis)	(dc's median axis)	(dc's minor axis)
Co	3.97	3.24	3.03
	(-0.579, 0.809, 0.097)	(-0.811, 0.584, 0.243)	(-0.083, 0.065, 0.965)
S1	5.05	3.74	3.38
	(-0.597, 0.300, 0.900)	(0.687, 0.671, 0.035)	(0.415, -0.678, 0.430)
S_2	4.52	3.61	3.29
	(-0.499, 0.652, 0.705)	(-0.814, -0.579, 0.223)	(0.297, -0.490, 0.673)
N_1	11.05	5.63	3.41
	(-0.343, 0.900, 0.369)	(-0.362, -0.392, 0.918)	(0.867, 0.192, 0.145)
N_2	8.93	5.82	3,03
	(-0.863, 0.503, 0.246)	(0.069, 0,205, 0.897)	(-0.500, -0.840, 0.367)
C_1	4.00	3.56	2.61
	(0.042, 0.851, 0.479)	(-0.262, -0.495, 0.868)	(-0.964, 0.172, 0.131)
C_2	4.72	4,42	2.08
	(0.193, 0.660, 0.620)	(0.474, -0.711, 0.332)	(-0.859, -0.244, 0.711)
C_3	6.40	4.77	1.45
	(-0.917, 0.389, 0.385)	(0.393, 0.850, 0.200)	(-0.066, -0.355, 0.901)
C ₄	5.12	4.22	2.85
	(-0.042, 0.999, 0.029)	(-0.910, -0.045, 0.691)	(0.412, 0.003, 0.722)
C ₅	9.76	4.14	4.03
	(-0.332, -0.120, 0.993)	(-0.939, 0.132, 0.015)	(0.085, 0.984, 0.119)
C_6	12.54	4.10	2.98
	(-0.669, 0.743, 0.239)	(0.077, 0.047, 0.913)	(-0.739, -0.667, 0.330)
C ₇	10.10	5.27	3.03
	(0.130, -0.659, 0.654)	(-0.806, 0.364, 0.708)	(0.577, 0.658, 0.264)
C ₈	7.92	5.78	2.14
	(-0.884, 0.414, 0.501)	(-0.264, -0.827, 0.557)	(0.386, 0.382, 0.663)
C ₉	8.13	5.70	3.06
	(-0.754, 0.653, 0.321)	(-0.398, 0.542, 0.830)	(0.523, 0.529, 0.456)

^a Direction cosines are referred to the monoclinic axes. ^b Atomic vibration ellipsoids are presented in terms of the isotropic thermal parameter *B*. The transformation to root-mean-square displacement $(\vec{u}^2)^{1/2}$ is: $(\vec{u}^2)^{1/2} = [B/8\pi^2]^{1/2}$.

 $H_{5,}^{29}$ 2.07 Å in π -C₅ H_5 Co[(CH₃)₄C₅O],³⁰ and 2.075 Å in π -C₅ H_5 Co[(CF₃)₄C₅O].³¹ This presumably reflects the different electron-donating ability and/or π -acceptor capability of the dithiolate ligand *vis a vis* the conjugated cyclopentadiene or cyclopentadienone systems.

Carbon-carbon distances around the π -cyclopentadienyl ring range from 1.383 to 1.440 Å (each ± 0.015 Å) and average 1.402 Å. The root-mean-square (rms) deviation from the least-squares plane through the five carbon atoms (0.7034X + 0.6523Y + 0.2821Z)

(29) M. R. Churchill, J. Organometal. Chem. (Amsterdam), 4, 258 (1965).

= 7.0404³²) is 0.022 Å. Thus, the π -cyclopentadienyl ligand has D_{5h} symmetry within the limits of experimental error. The cobalt and the eight atoms of the 1,2-dicyanoethene-1,2-dithiolate ligand form a plane (rms deviation 0.025 Å) which has the equation $-0.4980X + 0.2104Y + 8412Z = 2.7386.^{32}$ Although there is no crystallographically imposed symmetry, the molecule possesses approximate C₈ symmetry, the angle between π -cyclopentadienyl and CoS₂C₂(CN)₂ planes being 88.6°.

(32) (a) Planes were calculated using unit weights for all appropriate atoms; (b) planes are expressed in orthogonalized coordinates. These are related to the crystal axes by: $X = xa + zc \cos \beta$; Y = yb; $Z = zc \sin \beta$.

⁽³⁰⁾ L. F. Dahl and D. L. Smith, J. Am. Chem. Soc., 83, 752 (1961).

⁽³¹⁾ M. Gerloch and R. Mason, Proc. Roy. Soc. (London), A279, 170 (1964).

TABLE V INTRAMOLECULAR DISTANCES FOR π -C₅H₅CoS₂C₂(CN)₂^{*a*}

Atoms	Dist, Å	Atoms	Dist, Å
	(a) Distances within	the Dithiolate	ligand
$\rm Co-S_1$	2.118(3)	$C_1 - C_3$	1.463(11)
$Co-S_2$	2.116(2)	$C_2 - C_4$	1.462(11)
$S_1 - C_1$	1.707(7)	C_3-N_1	1.114(13)
S_2-C_2	1.697 (8)	C_4-N_2	1.146(11)
$C_1 - C_2$	1.364 (10)		
(b)	Distances within the	π -Cyclopentadie	enyl Ligand
Co-C ₅	2.043(9)	$C_{5}-C_{6}$	1.395(16)
$Co-C_6$	2.006(12)	C6-C7	1.440(16)
Co-C7	2.028(12)	$C_7 - C_8$	1.406(15)
$\mathrm{Co-C_8}$	2.050(10)	$C_{8}-C_{9}$	1.386(14)
Co-C ₉	2.020(9)	C ₉ C ₅	1.383(15)

^a Estimated standard deviations, shown in parentheses, are right-adjusted to the least-significant digit in the preceding number. They have been calculated from the full correlation matrix using the IBM 7094 program ORFFE, a crystallographic function and error program by W. R. Busing and H. A. Levy.

TABLE VI BOND ANGLES WITHIN THE π -C₅H₅CoS₂C₂(CN)₂ MOLECULE^{*a*}

			/-
Atoms	Angle, deg	Atoms	Angle, deg
	(a) Within the	Dithiolate Liga	nd
S_1 -Co- S_2	93.2(1)	$C_2 - C_1 - C_3$	120.8(7)
$Co-S_1-C_1$	103.1(2)	$C_1 - C_2 - C_4$	120.9(7)
$Co-S_2-C_2$	103.3(2)	$C_1 - C_3 - N_1$	176.9(9)
$S_1 - C_1 - C_2$	120.1(6)	$C_2 - C_4 - N_2$	178.6(9)
$S_2 - C_2 - C_1$	120.3(6)		
$S_1 - C_2 - C_3$	119.1(5)		
$S_2 - C_2 - C_4$	118.8(6)		
(b)	Within the π -Cyc	lopentadienyl S	system
C_5 - C_0 - C_6	40.3(5)	$C_{9}-C_{5}-C_{6}$	109.2(9)
$C_6 - C_0 - C_7$	41.8(5)	$C_{5}-C_{6}-C_{7}$	107.4(9)
C7C0C8	40.3(4)	$C_{6}-C_{7}-C_{8}$	105.7(9)
C_8 - C_9	39.8(4)	C7-C8-C9	109.6(9)
C ₉ -Co-C ₅	39.8(4)	$C_8 - C_9 - C_5$	107.8(9)

^{*a*} See footnote a of Table V.

The 1,2-Dicyanoethene-1,2-dithiolate Ligand.-Figure 1 shows the essential geometry of the dithiolate ligand. The mean carbon–sulfur bond length (1.702 \pm 0.007 Å) is in good agreement with that found in other dithiolate complexes (see Table VII). Although this distance is demonstrably shorter than the value of 1.817 ± 0.005 Å recognized for a C—S single bond and is close to the value of 1.71 ± 0.01 Å found for C=S,³³ Fritchie¹² has pointed out that the rehybridization involved in bonding a sulfur atom to a metal may result in the covalent radius changing by an uncertain amount. Thus it can be said only that our present value of $C-S = 1.702 \pm 0.007$ Å is consistent with some multiple bond character. Rather more information is forthcoming from the carbon-carbon distance within the "ethene" residue. The $C_1 - C_2$ bond distance of 1.364 ± 0.010 Å corresponds to a bond order of $\sim 1.7.^{34}$ It seems, therefore, that there is some delocalization of charge within the dithiolate moiety but that a valencebond description would involve a greater contribution

Figure 1.-Numbering of atoms and important dimensions in the π -C₅H₅CoS₂C₂(CN)₂ molecule.

TABLE VII

IMPORTANT DIMENSIONS WITHIN THE ETHENE-1.2-DITHIOLATE LIGANDS OF SOME TRANSITION METAL COMPLEXES

	Contraction and the second		
Complex	S—C, Å	C C, Å	Ref
$V[S_2C_2(CN)_2]_3^2$	1.72 ± 0.02	1.34 ± 0.03	16
$V[S_2C_2(C_6H_5)_2]_3$	1.69 ± 0.01	1.40 ± 0.02	14
$Mo[S_2C_2H_2]_3$	1.70 ± 0.03	1.34 ± 0.04	11
$Re[S_2C_2(C_6H_5)_3]_3$	1.69 ± 0.04^{a}	1.34 ± 0.03	2
$Fe_{2}[S_{2}C_{2}(CN)_{2}]_{4}^{2}$	1.73 ± 0.03	1.39 ± 0.03	15
$Co_2[S_2C_2(CF_3)_2]_4$	1.694 ± 0.016	1.393 ± 0.020	10
$Co[S_2C_2(CN)_2]_2^2$	1.723 ± 0.007	1.34 ± 0.01	7
$\pi - C_5 H_5 C_0 S_2 C_2 (CF_3)_2$	1.74 ± 0.05	1.48 ± 0.05	6
$\pi - C_5 H_5 C_0 S_2 C_2 (CN)_2$	1.702 ± 0.007	1.364 ± 0.010	b
$Ni[S_2C_2(CN)_2]_2{}^2-$	1.75 ± 0.02	1.33 ± 0.02	9
$Ni[S_2C_2(CN)_2]_2^-$	1.714 ± 0.004	1.356 ± 0.007	12
$Ni[S_2C_2(C_6H_5)_2]_2$	1.71 ± 0.01	1.370 ± 0.014	13
$Cu[S_2C_2(CN)_2]_2$	1.72 ± 0.01	1.32 ± 0.02	8
a C C furne 1	69 + 1 75 Å b Th	ta	

S-C varies from 1.62 to 1.75 Å. ^b This work.

from the ethylene-1,2-dithiolate resonance form (IV) than from the ethane-1.2-dithione structure (III). [It should be noted that Baird and White's value of 1.48 ± 0.05 Å for the C₁-C₂ distance in π -C₅H₅CoS₂C₂- $(CF_3)_2$, which constitutes their main evidence for a dithioketone structure, is not significantly different from our value at the 2.4σ level.]

The geometry of the dithiolate ligand in the present complex is indistinguishable from that of the corresponding ligand in the simple bis-square-planar complexes that have been examined.7-9,12,13 It appears that the distances within a dithiolate system (except possibly, the peripheral metal-sulfur distances) are not particularly dependent on the coordination stereochemistry of the metal. Furthermore, from the available data it would appear that dimensions within di-

⁽³³⁾ Reference 17, p S22s.
(34) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, p 237.

WITHIN THE a	π-C₅H₅Co	$S_2C_2(CN)$) ₂ Crystal	
Atom^{a}	Dist, Å	Atom	Atoma	Dist, Å
$H_9(II)$	3.01	H_5	$N_2(IV)$	2.72
$H_{6}(XIII)$	3.22	${ m H}_5$	$C_4(IV)$	2.91
$H_{5}(XIII)$	3.49	${ m H}_5$	$H_8(III)$	3.02
$H_6(XI)$	2.62	${ m H}_5$	$N_2(VII)$	3.38
$H_9(XII)$	2.76	${ m H}_{5}$	$S_1(XIII)$	3.49
$H_7(VI)$	2.81	\mathbf{H}_{6}	$N_2(VI)$	2.60
$H_8(XII)$	3.18	${ m H}_6$	$N_1(I)$	2.62
$C_6(XI)$	3.27	\mathbf{H}_{6}	$S_1(XIII)$	3.22
$C_9(XII)$	3.33	\mathbf{H}_{6}	$C_4(VI)$	3.25
$H_8(II)$	3.37	H_6	$H_{9}(XIV)$	3.27
$H_6(VI)$	2.60	\mathbf{H}_{6}	$H_8(III)$	3.30
$H_{9}(VIII)$	2.61	${ m H}_6$	$C_{3}(I)$	3.50
$H_{\mathfrak{s}}(V)$	2.72	H_7	$N_1(VI)$	2.81
$H_7(XI)$	3.03	H_7	$H_9(IX)$	2.92
$H_{\delta}(VIII)$	3.38	H_7	$N_2(I)$	3.03
$C_{9}(VIII)$	3.43	H_7	$C_9(IX)$	3.13
$C_6(VI)$	3.46	H_7	$C_3(VI)$	3.35
$H_7(VI)$	3.35	H_7	$C_{\mathfrak{s}}(IX)$	3.45
$H_8(II)$	3.44	H_8	$C_{5}(IX)$	2.90
$H_6(XI)$	3.50	H_8	${ m H}_{5}({ m IX})$	3.02
$H_{\delta}(V)$	2.91	H_8	$C_6(IX)$	3.06
$H_{6}(VI)$	3.25	H_8	$N_1(X)$	3.18
$H_8(111)$	2.90	H_8	$H_6(IX)$	3.30
$H_7(III)$	3.45	H_8	$N_1(II)$	3.37
$H_8(III)$	3.06	H_8	$C_3(II)$	3,44
$N_1(I)$	3.27	H_{9}	$N_2(VII)$	2.60
$N_2(VI)$	3.46	Н۹	$N_1(X)$	2.76
$H_7(III)$	3.13	H_{9}	$H_7(III)$	2.92
$N_1(X)$	3.33	${ m H}_{9}$	$S_1(II)$	3.01
$N_2(VII)$	3.43	\mathbf{H}_{ϑ}	$\mathrm{H}_{6}(\mathrm{XV})$	3.27
	$ \begin{array}{c} \text{ within the } \\ \text{ Atom}^{4} \\ \ \ \\ \ \\ \ \\ \ \\ \\ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c cccc} \text{WITHIN THE } π-C_{5}H_{5}Co} \\ \hline & \text{Atom}^{a} & \text{Dist, } \mathring{A} \\ H_{5}(II) & 3.01 \\ H_{6}(XIII) & 3.22 \\ H_{6}(XIII) & 3.49 \\ H_{6}(XI) & 2.62 \\ H_{9}(XII) & 2.76 \\ H_{7}(VI) & 2.81 \\ H_{8}(XII) & 3.18 \\ C_{6}(XI) & 3.27 \\ C_{9}(XII) & 3.33 \\ H_{8}(II) & 3.33 \\ H_{8}(II) & 3.37 \\ H_{6}(VI) & 2.60 \\ H_{9}(VIII) & 2.61 \\ H_{5}(V) & 2.72 \\ H_{7}(XI) & 3.03 \\ H_{5}(VIII) & 3.48 \\ C_{6}(VI) & 3.46 \\ H_{7}(VI) & 3.35 \\ H_{8}(II) & 3.44 \\ H_{6}(XI) & 3.20 \\ H_{5}(VII & 3.25 \\ H_{8}(III) & 3.44 \\ H_{6}(XI) & 3.25 \\ H_{8}(III) & 3.45 \\ H_{8}(III) & 3.46 \\ H_{7}(III) & 3.27 \\ H_{8}(III) & 3.46 \\ H_{7}(III) & 3.27 \\ H_{2}(VI) & 3.46 \\ H_{7}(III) & 3.13 \\ N_{1}(X) & 3.33 \\ N_{2}(VII) & 3.43 \\ \end{array}$	WITHIN THE π -C ₆ H ₅ CoS ₂ C ₂ (CN Atom ^a Dist, Å Atom H ₅ (II) 3.01 H ₅ H ₆ (XIII) 3.22 H ₅ H ₆ (XIII) 3.49 H ₅ H ₆ (XIII) 2.62 H ₅ H ₆ (XII) 2.62 H ₅ H ₆ (XII) 2.62 H ₅ H ₇ (VI) 2.81 H ₆ H ₈ (XII) 3.18 H ₆ C ₉ (XII) 3.33 H ₆ C ₉ (XII) 3.33 H ₆ H ₈ (II) 3.37 H ₆ H ₈ (II) 3.37 H ₆ H ₈ (VI) 2.60 H ₆ H ₈ (VI) 2.61 H ₆ H ₉ (VIII) 2.61 H ₆ H ₈ (V) 2.72 H ₇ H ₇ (XI) 3.03 H ₇ H ₆ (VII) 3.43 H ₇ C ₉ (VIII) 3.43 H ₇ C ₆ (VI) 3.46 H ₇ H ₇ (VI) 3.25 H ₈	WITHIN THE π -C ₆ H ₅ CoS ₂ C ₂ (CN) ₂ CRYSTAL Atom ^a Dist, Å Atom Atom ^a H ₉ (II) 3.01 H ₅ N ₂ (IV) H ₆ (XIII) 3.22 H ₅ C4(IV) H ₆ (XIII) 3.49 H ₅ H ₈ (III) H ₆ (XII) 2.62 H ₅ N ₂ (VI) H ₉ (XII) 2.76 H ₅ S ₁ (XIII) H ₇ (VI) 2.81 H ₆ N ₂ (VI) H ₈ (XII) 3.18 H ₈ N ₁ (I) C ₆ (XI) 3.27 H ₈ S ₁ (XIII) C ₆ (XI) 3.27 H ₆ S ₁ (XIII) C ₆ (XII) 3.33 H ₆ C ₄ (VI) H ₈ (II) 3.37 H ₆ H ₉ (XIV) H ₈ (II) 3.37 H ₆ H ₉ (XIV) H ₈ (VI) 2.60 H ₈ (III) H ₉ (XIV) H ₆ (VI) 2.61 H ₆ C ₃ (I) H ₇ (XI) 3.03 H ₇ N ₁ (VI) H ₇ (XI) 3.03 H ₇ C ₉ (IX

TABLE VIII Intermolecular Contacts (to 3.5 Å)

^a Transformations are: (I) $\frac{1}{2} + x$, $\frac{1}{2} + y$, z; (II) -x, y, $\frac{1}{2} - z$; (III) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (IV) x, 1 + y, z; (V) x, -1 + y, z; (VI) -x, 1 - y, -z; (VII), -x, 1 + y, $\frac{1}{2} - z$; (VIII) -x, -1 + y, $\frac{1}{2} - z$; (IX) $\frac{1}{2} - x$, $-\frac{1}{2} + y$, $\frac{1}{2} - z$; (X) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$; (XI) $-\frac{1}{2} + x$, $\frac{1}{2} + y$, z; (XII) $-\frac{1}{2} + x$, $\frac{3}{2} - y$, $-\frac{1}{2} + z$; (XIII) -x, 2 - y, -z; (XIV) x, 2 - y, $-\frac{1}{2} + z$; (XV) x, 2 - y, $\frac{1}{2} + z$.

thiolate ligands are not strongly dependent upon the nature of the substituent R (R = H, CN, CF₃, C₆H₅ in $S_2C_2R_2$) although they may be a function of the formal charge on the complex ion.¹³

Crystal Packing.—Molecules in the π -C₅H₅CoS₂C₂-(CN)₂ lattice are separated by normal van der Waals forces. Table VIII includes all intermolecular contacts to 3.5 Å. Figures 2 and 3 show the unit cell viewed down b and c, respectively. The structure consists of pillars of CoS₂C₂(CN)₂ groups which are surrounded by π -cyclopentadienyl ligands. The projection of the structure down c shows mm symmetry and is rather similar to that of $[N(n-C_4H_9)_4]{Cu[S_2C_2 (CN)_2]}.$ ⁸

Acknowledgments.—We thank Dr. J. A. McCleverty for providing the sample. J. P. F. acknowledges, with gratitude, the receipt of an NIH predoctoral fellowship.

Figure 2.—Packing diagram for π -C₅H₅CoS₂C₂(CN)₂, viewed down b.

Figure 3.—Packing diagram for π -C₅H₅CoS₂C₂(CN)₂, viewed down c.

This work has been generously supported by the National Science Foundation and the Advanced Research Projects Agency.